Wind Turbine Behavior and Control (Part 2) – Nanjing Oulu Electric

发布时间:2018-12-26

Nanjing Oulu Electric Co., Ltd.

Company Profile

A high-tech enterprise specializing in R&D, production, and system integration of:

  • New energy power generation (wind/PV hybrid systems)

  • Industrial automation (drives, servo control, EV motor controllers)

Core Products:

  1. Wind Turbines (300W–10MW)

  2. Hybrid Controllers/Inverters

  3. Telecom Monitoring Systems

  4. Motor Drives (PMSM/Servo/VFD)


Wind Turbine Behavior Analysis (Part 2)

1. Operational Divergence: Large vs. Small Wind Turbines

ParameterLarge Turbines (80m Hub)Small Turbines (8m Hub)
Wind ProfileV<sub>80m</sub>=10m/s (Class I)V<sub>8m</sub>=6.3m/s (Class III)
Turbulence12% (IEC 61400-1 NWP)>30% (Boundary layer effect)
Design BasisV<sub>design</sub>=50m/s (Typhoon)V<sub>design</sub>=1.4V<sub>ave</sub>=11m/s (BWEA)

Key Findings:

  • Height-Velocity Relationship:

    • Follows V=V<sub>hub</sub>(Z/Z<sub>hub</sub>)<sup>0.2</sup> (IEC 61400-1 NWP)

    • At 10m/s (80m): 8m height velocity drops to 6.3m/s (-37%)

  • Class Rationale:

    • Small turbines rarely encounter Class I winds (16m/s at 80m ≈ typhoon)

    • V<sub>design</sub>=11m/s (AWEA/BWEA) balances cost & safety

2. Control System Innovations

Breakthrough Technologies:

  • Active Pitch/Yaw Control:

    • Real-time blade adjustment (storm survival)

    • MEMS-based vibration damping

  • Tower Resonance Avoidance:

    • Software-limited RPM below 1P/3P frequencies

Field Data: Our 5MW turbine maintains <5% power fluctuation in Class III turbulence.


Why Nanjing Oulu?

  • Patent-protected active control algorithms

  • IEC/GL-certified simulation models

  • Custom solutions for low-wind/high-turbulence sites

a5a01bf1801dd64e7e133354c373632b (1).jpg

7f408a867bf02dea095316c234a085a7.jpg

Behavioral Differences Between Large and Small Wind Turbines

1. Large Wind Turbines (Class I/II, 80m+ Hub Height)

Characteristics:

  • High inertia: Slow acceleration/deceleration ("like a heavy truck")

  • Stable wind profile: Low turbulence (10–15%) at high altitudes

  • Efficiency:

    • Maintains optimal tip-speed ratio (λ) for max C<sub>p</sub>≈0.5 (e.g., Enercon E112)

    • Active pitch/yaw control ensures λ stays within ±5% of target

Control Advantage:

  • Real-time wind speed data (anemometers/LIDAR) enables precise λ calculation.


2. Small Wind Turbines (Class III/IV, <20m Hub Height)

Characteristics:

  • Low inertia: Rapid acceleration/deceleration ("like a sports car")

  • High turbulence: 30%+ due to ground boundary layer effects

  • Efficiency Challenges:

    • C<sub>p</sub> rarely exceeds 0.35 (vs. blade design potential of 0.45+)

    • No anemometer: Lacks wind speed data → impossible to calculate λ in real time

Key Limitations:

  1. Dynamic RPM Swings:

    • Fast wind gusts cause ±20% RPM fluctuations, pushing λ off optimal.

  2. Passive Control Dominance:

    • Tail-vane yaw and stall regulation cannot compensate for rapid λ shifts.


Technical Comparison

ParameterLarge TurbinesSmall Turbines
InertiaHigh (slow response)Low (fast response)
Wind DataAnemometer/LIDAR availableTypically none
C<sub>p</sub>0.45–0.50 (controlled)0.25–0.35 (uncontrolled)
λ Stability±5% (active pitch control)±30% (passive systems)

Nanjing Oulu’s Solutions for Small Turbines

  1. Adaptive Load Dumping:

    • Dynamic resistor banks stabilize RPM during gusts.

  2. Indirect λ Estimation:

    • Algorithm predicts wind speed from generator current harmonics.

  3. Mechanical Upgrades:

    • Flywheel add-ons to increase effective inertia.

Case Study: Our FD-5kW model achieved C<sub>p</sub>=0.38 in Class IV winds via hybrid passive/active braking.

cc9ab0e90a43fedddb169dec0a37f7e9.jpg